碳层厚度的设计,就需要结合废气的产生浓度、去除效率、活性炭的更换时长等因素进行。一般会采用2种方式计算碳层厚度:一是,根据活性炭需要的更换周期,来确定活性炭的总的装填量,之后再根据过滤面积计算碳层厚度;二是,在考虑吸附箱尺寸大小、碳层风阻、过滤风速的情况下,依照经验直接选定一个厚度值。以上设计基于活性炭的吸附速率为一个恒定值或者无限大到可忽略不计的情况下设计的。 而实际中吸附速率目前还不能有效计算出,不同的碳、不同的过滤风速、不同的风压等等,都会影响碳层的速率吸附速率。实际中影响碳层吸附速率的因素有:吸附质浓度、风压、温度、活性炭比表面积等等,各条件参数之间的关系可以表示为以下公式:停留时间确定后,活性炭的厚度即可根据设计的过滤风速计算得出。同样的条件下,一般活性炭层的厚度越厚,其去除效率也会越高,但实际应用中,为提高设备的经济性,通常要考虑碳层厚度不能无限制的加厚,因此对于活性炭层厚度的选择,需要根据去除效率要求和碳本身的吸附速率,进行有效设计计算。 通过图1可以看出,(1)碳层厚度选择小,吸附速率慢,碳层就会*被穿透,导致去除效率降低;(2)碳层厚度选择大,吸附速率快,碳层就不容易被穿透,碳可以长时间使用。3催化燃烧工艺3.1工艺原理及适用范围催化燃烧是利用贵金属催化剂降低废气中**物的活化能,使**物在较低的温度(一般在250~300oC左右,不同成分的**物,其催化燃烧温度不一样)下发生无火焰燃烧。 其原理是废气经过催化剂时,先被吸附至催化剂表面,然后在一定的温度下发生催化燃烧,达到净化的目的。目前**废气处理中常用的催化一般为蜂窝状钯金属催化剂和铂金属催化剂,催化燃烧方式有电加热和燃气加热,燃烧类型有直接催化燃烧(CO)和蓄热式催化燃烧(RCO)。催化燃烧一般适用于小风量、高浓度、高温的气态**物,且废气中不能含有硫、铅、、及卤素等可使催化剂中毒的因子。 3.2设计注意点(1)能耗:催化燃烧需要在一定温度条件下进行,对于低温气体就必须进行加热,风量越大其耗能越大,运行成本也就提高;因此选择此工艺时,在确保收集效率的前提下,尽可能降低排风量,这样既可提升排气浓度提升废气单位热值,又可降低风量降低能耗;同时也要考虑热将尾气中热量进行回收。(2)设备开机预热:设计时设备预热应为动态,而非静态预热;初始预热阶段利用的气体一般为空气,而非废气,待系统达到设计温度后方可切换为废气。 (3)安全:**废气一般属于易燃易性气体,虽然浓度高可以回收利用**物燃烧产生的部分热量,降低能耗,但在处理中必须将其浓度控制在限范围内。一般需要设置泄片、可燃气体探测仪、应急排空阀、稀释阀、防火阀等。(4)热回收方式:在能耗可接受范围的情况下,小风量一般采用简易的列管直接热交换回收热;对于能耗**出接受范围的,大风量一般需要采用蓄热式催化燃烧,可提高热回收效率。 4活性炭吸脱附与催化燃烧组合工艺4.1工艺原理实际应用中,活性炭吸附与催化燃烧,两者除了可以单独使用外,也可以组合使用。组合使用主要利用两者之间具有互补性的特点:活性炭吸附适用于大风量、低浓度废气,催化燃烧适用于小风量、高浓度废气,且活性炭在高温下被吸附的**物能够脱附出来J。从另一个角度看,此组合工艺可视为活性炭的现场再生利用工艺,既减少了活性炭吸附饱和后的更换处置成本,同时定期的浓缩脱附也避免了因活性炭吸附饱和未及时更换造成的**标排放风险。